How to get the line count of a large file cheaply in Python?

Query statement:

I need to get a line count of a large file (hundreds of thousands of lines) in python. What is the most efficient way both memory- and time-wise?

At the moment I do:

def file_len(fname):
    with open(fname) as f:
        for i, l in enumerate(f):
            pass
    return i + 1

is it possible to do any better?

Answer:

One line, probably pretty fast:

num_lines = sum(1 for line in open('myfile.txt'))

How to get the line count of a large file cheaply in Python?

You can’t get any better than that.

After all, any solution will have to read the entire file, figure out how many \n you have, and return that result.

Do you have a better way of doing that without reading the entire file? Not sure… The best solution will always be I/O-bound, the best you can do is make sure you don’t use unnecessary memory, but it looks like you have that covered.

Answer #2:

I believe that a memory mapped file will be the fastest solution. I tried four functions: the function posted by the OP (opcount); a simple iteration over the lines in the file (simplecount); readline with a memory-mapped filed (mmap) (mapcount); and the buffer read solution offered by Mykola Kharechko (bufcount).

I ran each function five times, and calculated the average run-time for a 1.2 million-line text file.

Windows XP, Python 2.5, 2GB RAM, 2 GHz AMD processor

Here are my results:

mapcount : 0.465599966049
simplecount : 0.756399965286
bufcount : 0.546800041199
opcount : 0.718600034714

Edit: numbers for Python 2.6:

mapcount : 0.471799945831
simplecount : 0.634400033951
bufcount : 0.468800067902
opcount : 0.602999973297

So the buffer read strategy seems to be the fastest for Windows/Python 2.6

Here is the code:

from __future__ import with_statement
import time
import mmap
import random
from collections import defaultdict

def mapcount(filename):
    f = open(filename, "r+")
    buf = mmap.mmap(f.fileno(), 0)
    lines = 0
    readline = buf.readline
    while readline():
        lines += 1
    return lines

def simplecount(filename):
    lines = 0
    for line in open(filename):
        lines += 1
    return lines

def bufcount(filename):
    f = open(filename)                  
    lines = 0
    buf_size = 1024 * 1024
    read_f = f.read # loop optimization

    buf = read_f(buf_size)
    while buf:
        lines += buf.count('\n')
        buf = read_f(buf_size)

    return lines

def opcount(fname):
    with open(fname) as f:
        for i, l in enumerate(f):
            pass
    return i + 1


counts = defaultdict(list)

for i in range(5):
    for func in [mapcount, simplecount, bufcount, opcount]:
        start_time = time.time()
        assert func("big_file.txt") == 1209138
        counts[func].append(time.time() - start_time)

for key, vals in counts.items():
    print key.__name__, ":", sum(vals) / float(len(vals))

Answer #3:

All of these solutions ignore one way to make this run considerably faster, namely by using the unbuffered (raw) interface, using bytearrays, and doing your own buffering. (This only applies in Python 3. In Python 2, the raw interface may or may not be used by default, but in Python 3, you’ll default into Unicode.)

Using a modified version of the timing tool, I believe the following code is faster (and marginally more pythonic) than any of the solutions offered:

def rawcount(filename):
    f = open(filename, 'rb')
    lines = 0
    buf_size = 1024 * 1024
    read_f = f.raw.read

    buf = read_f(buf_size)
    while buf:
        lines += buf.count(b'\n')
        buf = read_f(buf_size)

    return lines

Using a separate generator function, this runs a smidge faster:

def _make_gen(reader):
    b = reader(1024 * 1024)
    while b:
        yield b
        b = reader(1024*1024)

def rawgencount(filename):
    f = open(filename, 'rb')
    f_gen = _make_gen(f.raw.read)
    return sum( buf.count(b'\n') for buf in f_gen )

This can be done completely with generators expressions in-line using itertools, but it gets pretty weird looking:

from itertools import (takewhile,repeat)

def rawincount(filename):
    f = open(filename, 'rb')
    bufgen = takewhile(lambda x: x, (f.raw.read(1024*1024) for _ in repeat(None)))
    return sum( buf.count(b'\n') for buf in bufgen )

Here are my timings:

function      average, s  min, s   ratio
rawincount        0.0043  0.0041   1.00
rawgencount       0.0044  0.0042   1.01
rawcount          0.0048  0.0045   1.09
bufcount          0.008   0.0068   1.64
wccount           0.01    0.0097   2.35
itercount         0.014   0.014    3.41
opcount           0.02    0.02     4.83
kylecount         0.021   0.021    5.05
simplecount       0.022   0.022    5.25
mapcount          0.037   0.031    7.46

Answer #4:

Here is a python program to use the multiprocessing library to distribute the line counting across machines/cores. My test improves counting a 20million line file from 26 seconds to 7 seconds using an 8 core windows 64 server. Note: not using memory mapping makes things much slower.

import multiprocessing, sys, time, os, mmap
import logging, logging.handlers

def init_logger(pid):
    console_format = 'P{0} %(levelname)s %(message)s'.format(pid)
    logger = logging.getLogger()  # New logger at root level
    logger.setLevel( logging.INFO )
    logger.handlers.append( logging.StreamHandler() )
    logger.handlers[0].setFormatter( logging.Formatter( console_format, '%d/%m/%y %H:%M:%S' ) )

def getFileLineCount( queues, pid, processes, file1 ):
    init_logger(pid)
    logging.info( 'start' )

    physical_file = open(file1, "r")
    #  mmap.mmap(fileno, length[, tagname[, access[, offset]]]

    m1 = mmap.mmap( physical_file.fileno(), 0, access=mmap.ACCESS_READ )

    #work out file size to divide up line counting

    fSize = os.stat(file1).st_size
    chunk = (fSize / processes) + 1

    lines = 0

    #get where I start and stop
    _seedStart = chunk * (pid)
    _seekEnd = chunk * (pid+1)
    seekStart = int(_seedStart)
    seekEnd = int(_seekEnd)

    if seekEnd < int(_seekEnd + 1):
        seekEnd += 1

    if _seedStart < int(seekStart + 1):
        seekStart += 1

    if seekEnd > fSize:
        seekEnd = fSize

    #find where to start
    if pid > 0:
        m1.seek( seekStart )
        #read next line
        l1 = m1.readline()  # need to use readline with memory mapped files
        seekStart = m1.tell()

    #tell previous rank my seek start to make their seek end

    if pid > 0:
        queues[pid-1].put( seekStart )
    if pid < processes-1:
        seekEnd = queues[pid].get()

    m1.seek( seekStart )
    l1 = m1.readline()

    while len(l1) > 0:
        lines += 1
        l1 = m1.readline()
        if m1.tell() > seekEnd or len(l1) == 0:
            break

    logging.info( 'done' )
    # add up the results
    if pid == 0:
        for p in range(1,processes):
            lines += queues[0].get()
        queues[0].put(lines) # the total lines counted
    else:
        queues[0].put(lines)

    m1.close()
    physical_file.close()

if __name__ == '__main__':
    init_logger( 'main' )
    if len(sys.argv) > 1:
        file_name = sys.argv[1]
    else:
        logging.fatal( 'parameters required: file-name [processes]' )
        exit()

    t = time.time()
    processes = multiprocessing.cpu_count()
    if len(sys.argv) > 2:
        processes = int(sys.argv[2])
    queues=[] # a queue for each process
    for pid in range(processes):
        queues.append( multiprocessing.Queue() )
    jobs=[]
    prev_pipe = 0
    for pid in range(processes):
        p = multiprocessing.Process( target = getFileLineCount, args=(queues, pid, processes, file_name,) )
        p.start()
        jobs.append(p)

    jobs[0].join() #wait for counting to finish
    lines = queues[0].get()

    logging.info( 'finished {} Lines:{}'.format( time.time() - t, lines ) )

How to get the line count of a large file in Python?

You could execute a subprocess and run wc -l filename

import subprocess

def file_len(fname):
    p = subprocess.Popen(['wc', '-l', fname], stdout=subprocess.PIPE, 
                                              stderr=subprocess.PIPE)
    result, err = p.communicate()
    if p.returncode != 0:
        raise IOError(err)
    return int(result.strip().split()[0])

About ᴾᴿᴼᵍʳᵃᵐᵐᵉʳ

Linux and Python enthusiast, in love with open source since 2014, Writer at programming-articles.com, India.

View all posts by ᴾᴿᴼᵍʳᵃᵐᵐᵉʳ →