Sample problem:
We all know you can’t do the following because of ConcurrentModificationException
:
for (Object i : l) {
if (condition(i)) {
l.remove(i);
}
}
But this apparently works sometimes, but not always. Here’s some specific code:
public static void main(String[] args) {
Collection<Integer> l = new ArrayList<>();
for (int i = 0; i < 10; ++i) {
l.add(4);
l.add(5);
l.add(6);
}
for (int i : l) {
if (i == 5) {
l.remove(i);
}
}
System.out.println(l);
}
This, of course, results in:
Exception in thread "main" java.util.ConcurrentModificationException
Even though multiple threads aren’t doing it. Anyway.
What’s the best solution to this problem? How can I remove an item from the collection in a loop without throwing this exception?
I’m also using an arbitrary Collection
here, not necessarily an ArrayList
, so you can’t rely on get
.
Answer #1:
Iterator.remove()
is safe, you can use it like this:
List<String> list = new ArrayList<>();
// This is a clever way to create the iterator and call iterator.hasNext() like
// you would do in a while-loop. It would be the same as doing:
// Iterator<String> iterator = list.iterator();
// while (iterator.hasNext()) {
for (Iterator<String> iterator = list.iterator(); iterator.hasNext();) {
String string = iterator.next();
if (string.isEmpty()) {
// Remove the current element from the iterator and the list.
iterator.remove();
}
}
Note that Iterator.remove()
is the only safe way to modify a collection during iteration; the behavior is unspecified if the underlying collection is modified in any other way while the iteration is in progress.
Source: docs.oracle > The Collection Interface
And similarly, if you have a ListIterator
and want to add items, you can use ListIterator#add
, for the same reason you can use Iterator#remove
— it’s designed to allow it.
In your case you tried to remove from a list, but the same restriction applies if trying to put
into a Map
while iterating its content.
Answer #2:
This works:
Iterator<Integer> iter = l.iterator();
while (iter.hasNext()) {
if (iter.next() == 5) {
iter.remove();
}
}
I assumed that since a foreach loop is syntactic sugar for iterating, using an iterator wouldn’t help… but it gives you this .remove()
functionality.
Answer #3:
With Java 8 you can use the new removeIf
method. Applied to your example:
Collection<Integer> coll = new ArrayList<>();
//populate
coll.removeIf(i -> i == 5);
Answer #4:
Since the question has been already answered i.e. the best way is to use the remove method of the iterator object, I would go into the specifics of the place where the error "java.util.ConcurrentModificationException"
is thrown.
Every collection class has a private class which implements the Iterator interface and provides methods like next()
, remove()
and hasNext()
.
The code for next looks something like this…
public E next() {
checkForComodification();
try {
E next = get(cursor);
lastRet = cursor++;
return next;
} catch(IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
Here the method checkForComodification
is implemented as
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
So, as you can see, if you explicitly try to remove an element from the collection. It results in modCount
getting different from expectedModCount
, resulting in the exception ConcurrentModificationException
.
Answer #5:
You can either use the iterator directly like you mentioned, or else keep a second collection and add each item you want to remove to the new collection, then removeAll at the end. This allows you to keep using the type-safety of the for-each loop at the cost of increased memory use and cpu time (shouldn’t be a huge problem unless you have really, really big lists or a really old computer)
public static void main(String[] args)
{
Collection<Integer> l = new ArrayList<Integer>();
Collection<Integer> itemsToRemove = new ArrayList<>();
for (int i=0; i < 10; i++) {
l.add(Integer.of(4));
l.add(Integer.of(5));
l.add(Integer.of(6));
}
for (Integer i : l)
{
if (i.intValue() == 5) {
itemsToRemove.add(i);
}
}
l.removeAll(itemsToRemove);
System.out.println(l);
}
Answer #6:
In such cases a common trick is (was?) to go backwards:
for(int i = l.size() - 1; i >= 0; i --) {
if (l.get(i) == 5) {
l.remove(i);
}
}
That said, I’m more than happy that you have better ways in Java 8, e.g. removeIf
or filter
on streams.
Answer #7:
With a for loop:
for (Iterator<Object> it = objects.iterator(); it.hasNext();) {
Object object = it.next();
if (test) {
it.remove();
}
}
Answer #8:
Make a copy of existing list and iterate over new copy.
for (String str : new ArrayList<String>(listOfStr))
{
listOfStr.remove(/* object reference or index */);
}
Answer #9:
With Eclipse Collections, the method removeIf
defined on MutableCollection will work:
MutableList<Integer> list = Lists.mutable.of(1, 2, 3, 4, 5);
list.removeIf(Predicates.lessThan(3));
Assert.assertEquals(Lists.mutable.of(3, 4, 5), list);
With Java 8 Lambda syntax this can be written as follows:
MutableList<Integer> list = Lists.mutable.of(1, 2, 3, 4, 5);
list.removeIf(Predicates.cast(integer -> integer < 3));
Assert.assertEquals(Lists.mutable.of(3, 4, 5), list);
The call to Predicates.cast()
is necessary here because a default removeIf
method was added on the java.util.Collection
interface in Java 8.
Note: I am a committer for Eclipse Collections.
Answer #10:
People are asserting one can’t remove from a Collection being iterated by a foreach loop. I just wanted to point out that is technically incorrect and describe exactly (I know the OP’s question is so advanced as to obviate knowing this) the code behind that assumption:
for (TouchableObj obj : untouchedSet) { // <--- This is where ConcurrentModificationException strikes
if (obj.isTouched()) {
untouchedSet.remove(obj);
touchedSt.add(obj);
break; // this is key to avoiding returning to the foreach
}
}
It isn’t that you can’t remove from the iterated Colletion
rather that you can’t then continue iteration once you do. Hence the break
in the code above.
Apologies if this answer is a somewhat specialist use-case and more suited to the original thread I arrived here from, that one is marked as a duplicate (despite this thread appearing more nuanced) of this and locked.
Iterating through a Collection, avoiding ConcurrentModificationException when removing objects in a loop- Answer #11:
With a traditional for loop
ArrayList<String> myArray = new ArrayList<>();
for (int i = 0; i < myArray.size(); ) {
String text = myArray.get(i);
if (someCondition(text))
myArray.remove(i);
else
i++;
}
Hope you learned something from this post.
Follow Programming Articles for more!