What is the difference between ArrayList and LinkedList in Java?

Query:

I’ve always been one to simply use:

List<String> names = new ArrayList<>();

I use the interface as the type name for portability, so that when I ask questions such as these I can rework my code.

When should LinkedList be used over ArrayList and vice-versa?

What is the difference between ArrayList and LinkedList in Java?

It’s an efficiency question. LinkedList is fast for adding and deleting elements, but slow to access a specific element. ArrayList is fast for accessing a specific element but can be slow to add to either end and especially slow to delete in the middle.

Correct or Incorrect: Please execute the test locally and decide for yourself!

Edit/Remove is faster in LinkedList than ArrayList.

ArrayList, backed by Array, which needs to be double the size, is worse in large volume applications.

Below is the unit test result for each operation. Timing is given in Nanoseconds.


Operation                       ArrayList                      LinkedList  

AddAll   (Insert)               101,16719                      2623,29291 

Add      (Insert-Sequentially)  152,46840                      966,62216

Add      (insert-randomly)      36527                          29193

remove   (Delete)               20,56,9095                     20,45,4904

contains (Search)               186,15,704                     189,64,981

Here’s the code:

import org.junit.Assert;
import org.junit.Test;

import java.util.*;

public class ArrayListVsLinkedList {
    private static final int MAX = 500000;
    String[] strings = maxArray();

    ////////////// ADD ALL ////////////////////////////////////////
    @Test
    public void arrayListAddAll() {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX);

        watch.start();
        arrayList.addAll(stringList);
        watch.totalTime("Array List addAll() = ");//101,16719 Nanoseconds
    }

    @Test
    public void linkedListAddAll() throws Exception {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);

        watch.start();
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(stringList);
        watch.totalTime("Linked List addAll() = ");  //2623,29291 Nanoseconds
    }

    //Note: ArrayList is 26 time faster here than LinkedList for addAll()

    ///////////////// INSERT /////////////////////////////////////////////
    @Test
    public void arrayListAdd() {
        Watch watch = new Watch();
        List<String> arrayList = new ArrayList<String>(MAX);

        watch.start();
        for (String string : strings)
            arrayList.add(string);
        watch.totalTime("Array List add() = ");//152,46840 Nanoseconds
    }

    @Test
    public void linkedListAdd() {
        Watch watch = new Watch();

        List<String> linkedList = new LinkedList<String>();
        watch.start();
        for (String string : strings)
            linkedList.add(string);
        watch.totalTime("Linked List add() = ");  //966,62216 Nanoseconds
    }

    //Note: ArrayList is 9 times faster than LinkedList for add sequentially

    /////////////////// INSERT IN BETWEEN ///////////////////////////////////////

    @Test
    public void arrayListInsertOne() {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX + MAX / 10);
        arrayList.addAll(stringList);

        String insertString0 = getString(true, MAX / 2 + 10);
        String insertString1 = getString(true, MAX / 2 + 20);
        String insertString2 = getString(true, MAX / 2 + 30);
        String insertString3 = getString(true, MAX / 2 + 40);

        watch.start();

        arrayList.add(insertString0);
        arrayList.add(insertString1);
        arrayList.add(insertString2);
        arrayList.add(insertString3);

        watch.totalTime("Array List add() = ");//36527
    }

    @Test
    public void linkedListInsertOne() {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(stringList);

        String insertString0 = getString(true, MAX / 2 + 10);
        String insertString1 = getString(true, MAX / 2 + 20);
        String insertString2 = getString(true, MAX / 2 + 30);
        String insertString3 = getString(true, MAX / 2 + 40);

        watch.start();

        linkedList.add(insertString0);
        linkedList.add(insertString1);
        linkedList.add(insertString2);
        linkedList.add(insertString3);

        watch.totalTime("Linked List add = ");//29193
    }


    //Note: LinkedList is 3000 nanosecond faster than ArrayList for insert randomly.

    ////////////////// DELETE //////////////////////////////////////////////////////
    @Test
    public void arrayListRemove() throws Exception {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX);

        arrayList.addAll(stringList);
        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        arrayList.remove(searchString0);
        arrayList.remove(searchString1);
        watch.totalTime("Array List remove() = ");//20,56,9095 Nanoseconds
    }

    @Test
    public void linkedListRemove() throws Exception {
        Watch watch = new Watch();
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(Arrays.asList(strings));

        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        linkedList.remove(searchString0);
        linkedList.remove(searchString1);
        watch.totalTime("Linked List remove = ");//20,45,4904 Nanoseconds
    }

    //Note: LinkedList is 10 millisecond faster than ArrayList while removing item.

    ///////////////////// SEARCH ///////////////////////////////////////////
    @Test
    public void arrayListSearch() throws Exception {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX);

        arrayList.addAll(stringList);
        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        arrayList.contains(searchString0);
        arrayList.contains(searchString1);
        watch.totalTime("Array List addAll() time = ");//186,15,704
    }

    @Test
    public void linkedListSearch() throws Exception {
        Watch watch = new Watch();
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(Arrays.asList(strings));

        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        linkedList.contains(searchString0);
        linkedList.contains(searchString1);
        watch.totalTime("Linked List addAll() time = ");//189,64,981
    }

    //Note: Linked List is 500 Milliseconds faster than ArrayList

    class Watch {
        private long startTime;
        private long endTime;

        public void start() {
            startTime = System.nanoTime();
        }

        private void stop() {
            endTime = System.nanoTime();
        }

        public void totalTime(String s) {
            stop();
            System.out.println(s + (endTime - startTime));
        }
    }


    private String[] maxArray() {
        String[] strings = new String[MAX];
        Boolean result = Boolean.TRUE;
        for (int i = 0; i < MAX; i++) {
            strings[i] = getString(result, i);
            result = !result;
        }
        return strings;
    }

    private String getString(Boolean result, int i) {
        return String.valueOf(result) + i + String.valueOf(!result);
    }
}

Why ArrayList is better than LinkedList?

ArrayList is what you want. LinkedList is almost always a (performance) bug.

Why LinkedList sucks:

  • It uses lots of small memory objects, and therefore impacts performance across the process.
  • Lots of small objects are bad for cache-locality.
  • Any indexed operation requires a traversal, i.e. has O(n) performance. This is not obvious in the source code, leading to algorithms O(n) slower than if ArrayList was used.
  • Getting good performance is tricky.
  • Even when big-O performance is the same as ArrayList, it is probably going to be significantly slower anyway.
  • It’s jarring to see LinkedList in source because it is probably the wrong choice.

LinkedList is almost always the wrong choice, performance-wise. There are some very specific algorithms where a LinkedList is called for, but those are very, very rare and the algorithm will usually specifically depend on LinkedList’s ability to insert and delete elements in the middle of the list relatively quickly, once you’ve navigated there with a ListIterator.

There is one common use case in which LinkedList outperforms ArrayList: that of a queue. However, if your goal is performance, instead of LinkedList you should also consider using an ArrayBlockingQueue (if you can determine an upper bound on your queue size ahead of time, and can afford to allocate all the memory up front), or this CircularArrayList implementation. (Yes, it’s from 2001, so you’ll need to generify it, but I got comparable performance ratios to what’s quoted in the article just now in a recent JVM)

When to use LinkedList over ArrayList in Java?

Summary ArrayList with ArrayDeque are preferable in many more use-cases than LinkedList. If you’re not sure — just start with ArrayList.


TLDR, in ArrayList accessing an element, takes constant time [O(1)], and adding an element takes O(n) time [worst case]. In LinkedList adding an element takes O(n) time and accessing also takes O(n) time but LinkedList uses more memory than ArrayList.

LinkedList and ArrayList are two different implementations of the List interface. LinkedList implements it with a doubly-linked list. ArrayList implements it with a dynamically re-sizing array.

As with standard linked list and array operations, the various methods will have different algorithmic runtimes.

For LinkedList<E>

  • get(int index) is O(n) (with n/4 steps on average), but O(1) when index = 0 or index = list.size() - 1 (in this case, you can also use getFirst() and getLast()). One of the main benefits of LinkedList<E>
  • add(int index, E element) is O(n) (with n/4 steps on average), but O(1) when index = 0 or index = list.size() - 1 (in this case, you can also use addFirst() and addLast()/add()). One of the main benefits of LinkedList<E>
  • remove(int index) is O(n) (with n/4 steps on average), but O(1) when index = 0 or index = list.size() - 1 (in this case, you can also use removeFirst() and removeLast()). One of the main benefits of LinkedList<E>
  • Iterator.remove() is O(1)One of the main benefits of LinkedList<E>
  • ListIterator.add(E element) is O(1)One of the main benefits of LinkedList<E>

Note: Many of the operations need n/4 steps on average, constant number of steps in the best case (e.g. index = 0), and n/2 steps in worst case (middle of list)

For ArrayList<E>

  • get(int index) is O(1)Main benefit of ArrayList<E>
  • add(E element) is O(1) amortized, but O(n) worst-case since the array must be resized and copied
  • add(int index, E element) is O(n) (with n/2 steps on average)
  • remove(int index) is O(n) (with n/2 steps on average)
  • Iterator.remove() is O(n) (with n/2 steps on average)
  • ListIterator.add(E element) is O(n) (with n/2 steps on average)

Note: Many of the operations need n/2 steps on average, constant number of steps in the best case (end of list), n steps in the worst case (start of list)

LinkedList<E> allows for constant-time insertions or removals using iterators, but only sequential access of elements. In other words, you can walk the list forwards or backwards, but finding a position in the list takes time proportional to the size of the list. Javadoc says “operations that index into the list will traverse the list from the beginning or the end, whichever is closer”, so those methods are O(n) (n/4 steps) on average, though O(1) for index = 0.

ArrayList<E>, on the other hand, allow fast random read access, so you can grab any element in constant time. But adding or removing from anywhere but the end requires shifting all the latter elements over, either to make an opening or fill the gap. Also, if you add more elements than the capacity of the underlying array, a new array (1.5 times the size) is allocated, and the old array is copied to the new one, so adding to an ArrayList is O(n) in the worst case but constant on average.

So depending on the operations you intend to do, you should choose the implementations accordingly. Iterating over either kind of List is practically equally cheap. (Iterating over an ArrayList is technically faster, but unless you’re doing something really performance-sensitive, you shouldn’t worry about this — they’re both constants.)

The main benefits of using a LinkedList arise when you re-use existing iterators to insert and remove elements. These operations can then be done in O(1) by changing the list locally only. In an array list, the remainder of the array needs to be moved (i.e. copied). On the other side, seeking in a LinkedList means following the links in O(n) (n/2 steps) for worst case, whereas in an ArrayList the desired position can be computed mathematically and accessed in O(1).

Another benefit of using a LinkedList arises when you add or remove from the head of the list, since those operations are O(1), while they are O(n) for ArrayList. Note that ArrayDeque may be a good alternative to LinkedList for adding and removing from the head, but it is not a List.

Also, if you have large lists, keep in mind that memory usage is also different. Each element of a LinkedList has more overhead since pointers to the next and previous elements are also stored. ArrayLists don’t have this overhead. However, ArrayLists take up as much memory as is allocated for the capacity, regardless of whether elements have actually been added.

The default initial capacity of an ArrayList is pretty small (10 from Java 1.4 – 1.8). But since the underlying implementation is an array, the array must be resized if you add a lot of elements. To avoid the high cost of resizing when you know you’re going to add a lot of elements, construct the ArrayList with a higher initial capacity.

If the data structures perspective is used to understand the two structures, a LinkedList is basically a sequential data structure which contains a head Node. The Node is a wrapper for two components : a value of type T [accepted through generics] and another reference to the Node linked to it. So, we can assert it is a recursive data structure (a Node contains another Node which has another Node and so on…). Addition of elements takes linear time in LinkedList as stated above.

An ArrayList, is a growable array. It is just like a regular array. Under the hood, when an element is added at index i, it creates another array with a size which is 1 greater than previous size (So in general, when n elements are to be added to an ArrayList, a new array of size previous size plus n is created). The elements are then copied from previous array to new one and the elements that are to be added are also placed at the specified indices.

ArrayList vs LinkedList memory footprint:

Thus far, nobody seems to have addressed the memory footprint of each of these lists besides the general consensus that a LinkedList is “lots more” than an ArrayList so I did some number crunching to demonstrate exactly how much both lists take up for N null references.

Since references are either 32 or 64 bits (even when null) on their relative systems, I have included 4 sets of data for 32 and 64 bit LinkedLists and ArrayLists.

Note: The sizes shown for the ArrayList lines are for trimmed lists – In practice, the capacity of the backing array in an ArrayList is generally larger than its current element count.

Note 2: (thanks BeeOnRope) As CompressedOops is default now from mid JDK6 and up, the values below for 64-bit machines will basically match their 32-bit counterparts, unless of course you specifically turn it off.


Graph of LinkedList and ArrayList No. of Elements x Bytes

The result clearly shows that LinkedList is a whole lot more than ArrayList, especially with a very high element count. If memory is a factor, steer clear of LinkedLists.

The formulas I used follow, let me know if I have done anything wrong and I will fix it up. ‘b’ is either 4 or 8 for 32 or 64 bit systems, and ‘n’ is the number of elements. Note the reason for the mods is because all objects in java will take up a multiple of 8 bytes space regardless of whether it is all used or not.

ArrayList:

ArrayList object header + size integer + modCount integer + array reference + (array oject header + b * n) + MOD(array oject, 8) + MOD(ArrayList object, 8) == 8 + 4 + 4 + b + (12 + b * n) + MOD(12 + b * n, 8) + MOD(8 + 4 + 4 + b + (12 + b * n) + MOD(12 + b * n, 8), 8)

LinkedList:

LinkedList object header + size integer + modCount integer + reference to header + reference to footer + (node object overhead + reference to previous element + reference to next element + reference to element) * n) + MOD(node object, 8) * n + MOD(LinkedList object, 8) == 8 + 4 + 4 + 2 * b + (8 + 3 * b) * n + MOD(8 + 3 * b, 8) * n + MOD(8 + 4 + 4 + 2 * b + (8 + 3 * b) * n + MOD(8 + 3 * b, 8) * n, 8)

Hope you learned something from this post.

Follow Programming Articles for more!

About ᴾᴿᴼᵍʳᵃᵐᵐᵉʳ

Linux and Python enthusiast, in love with open source since 2014, Writer at programming-articles.com, India.

View all posts by ᴾᴿᴼᵍʳᵃᵐᵐᵉʳ →