What is the difference between staticmethod and classmethod in Python?

Answer:

Maybe a bit of example code will help: Notice the difference in the call signatures of fooclass_foo and static_foo:

class A(object):
    def foo(self, x):
        print(f"executing foo({self}, {x})")

    @classmethod
    def class_foo(cls, x):
        print(f"executing class_foo({cls}, {x})")

    @staticmethod
    def static_foo(x):
        print(f"executing static_foo({x})")

a = A()

Below is the usual way an object instance calls a method. The object instance, a, is implicitly passed as the first argument.

a.foo(1)
# executing foo(<__main__.A object at 0xb7dbef0c>, 1)

With classmethods, the class of the object instance is implicitly passed as the first argument instead of self.

a.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)

You can also call class_foo using the class. In fact, if you define something to be a classmethod, it is probably because you intend to call it from the class rather than from a class instance. A.foo(1) would have raised a TypeError, but A.class_foo(1) works just fine:

A.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)

One use people have found for class methods is to create inheritable alternative constructors.


With staticmethods, neither self (the object instance) nor cls (the class) is implicitly passed as the first argument. They behave like plain functions except that you can call them from an instance or the class:

a.static_foo(1)
# executing static_foo(1)

A.static_foo('hi')
# executing static_foo(hi)

Staticmethods are used to group functions which have some logical connection with a class to the class.


foo is just a function, but when you call a.foo you don’t just get the function, you get a “partially applied” version of the function with the object instance a bound as the first argument to the function. foo expects 2 arguments, while a.foo only expects 1 argument.

a is bound to foo. That is what is meant by the term “bound” below:

print(a.foo)
# <bound method A.foo of <__main__.A object at 0xb7d52f0c>>

With a.class_fooa is not bound to class_foo, rather the class A is bound to class_foo.

print(a.class_foo)
# <bound method type.class_foo of <class '__main__.A'>>

Here, with a staticmethod, even though it is a method, a.static_foo just returns a good ‘ole function with no arguments bound. static_foo expects 1 argument, and a.static_foo expects 1 argument too.

print(a.static_foo)
# <function static_foo at 0xb7d479cc>

And of course the same thing happens when you call static_foo with the class A instead.

print(A.static_foo)
# <function static_foo at 0xb7d479cc>

staticmethod vs classmethod in Python- Answer #2:

staticmethod is a method that knows nothing about the class or instance it was called on. It just gets the arguments that were passed, no implicit first argument. It is basically useless in Python — you can just use a module function instead of a staticmethod.

classmethod, on the other hand, is a method that gets passed the class it was called on, or the class of the instance it was called on, as first argument. This is useful when you want the method to be a factory for the class: since it gets the actual class it was called on as first argument, you can always instantiate the right class, even when subclasses are involved. Observe for instance how dict.fromkeys(), a classmethod, returns an instance of the subclass when called on a subclass:

>>> class DictSubclass(dict):
...     def __repr__(self):
...         return "DictSubclass"
... 
>>> dict.fromkeys("abc")
{'a': None, 'c': None, 'b': None}
>>> DictSubclass.fromkeys("abc")
DictSubclass
>>> 

Basically @classmethod makes a method whose first argument is the class it’s called from (rather than the class instance), @staticmethod does not have any implicit arguments.

To understand the difference in the tabular form:

Static MethodClass Method
The @staticmethod decorator is used to create a static method.The @classmethod decorator is used to create a class method.
No specific parameters are used.It takes cls as the first parameter.
It cannot access or modify the class state.It can access or modify the class state.
Static methods do not know about the class state. These methods are used to do some utility tasks by taking some parameters.The class method takes the class as a parameter to know about the state of that class.
Static methods are used to do some utility tasks.Class methods are used for factory methods.
It contains totally self-contained code.It can modify class-specific details.

Answer #3:

What is the difference between @staticmethod and @classmethod in Python?

You may have seen Python code like this pseudocode, which demonstrates the signatures of the various method types and provides a docstring to explain each:

class Foo(object):

    def a_normal_instance_method(self, arg_1, kwarg_2=None):
        '''
        Return a value that is a function of the instance with its
        attributes, and other arguments such as arg_1 and kwarg2
        '''

    @staticmethod
    def a_static_method(arg_0):
        '''
        Return a value that is a function of arg_0. It does not know the 
        instance or class it is called from.
        '''

    @classmethod
    def a_class_method(cls, arg1):
        '''
        Return a value that is a function of the class and other arguments.
        respects subclassing, it is called with the class it is called from.
        '''

The Normal Instance Method

First I’ll explain a_normal_instance_method. This is precisely called an “instance method“. When an instance method is used, it is used as a partial function (as opposed to a total function, defined for all values when viewed in source code) that is, when used, the first of the arguments is predefined as the instance of the object, with all of its given attributes. It has the instance of the object bound to it, and it must be called from an instance of the object. Typically, it will access various attributes of the instance.

For example, this is an instance of a string:

', '

if we use the instance method, join on this string, to join another iterable, it quite obviously is a function of the instance, in addition to being a function of the iterable list, ['a', 'b', 'c']:

>>> ', '.join(['a', 'b', 'c'])
'a, b, c'

Bound methods

Instance methods can be bound via a dotted lookup for use later.

For example, this binds the str.join method to the ':' instance:

>>> join_with_colons = ':'.join 

And later we can use this as a function that already has the first argument bound to it. In this way, it works like a partial function on the instance:

>>> join_with_colons('abcde')
'a:b:c:d:e'
>>> join_with_colons(['FF', 'FF', 'FF', 'FF', 'FF', 'FF'])
'FF:FF:FF:FF:FF:FF'

Static Method

The static method does not take the instance as an argument.

It is very similar to a module level function.

However, a module level function must live in the module and be specially imported to other places where it is used.

If it is attached to the object, however, it will follow the object conveniently through importing and inheritance as well.

An example of a static method is str.maketrans, moved from the string module in Python 3. It makes a translation table suitable for consumption by str.translate. It does seem rather silly when used from an instance of a string, as demonstrated below, but importing the function from the string module is rather clumsy, and it’s nice to be able to call it from the class, as in str.maketrans

# demonstrate same function whether called from instance or not:
>>> ', '.maketrans('ABC', 'abc')
{65: 97, 66: 98, 67: 99}
>>> str.maketrans('ABC', 'abc')
{65: 97, 66: 98, 67: 99}

In python 2, you have to import this function from the increasingly less useful string module:

>>> import string
>>> 'ABCDEFG'.translate(string.maketrans('ABC', 'abc'))
'abcDEFG'

Class Method

A class method is a similar to an instance method in that it takes an implicit first argument, but instead of taking the instance, it takes the class. Frequently these are used as alternative constructors for better semantic usage and it will support inheritance.

The most canonical example of a builtin classmethod is dict.fromkeys. It is used as an alternative constructor of dict, (well suited for when you know what your keys are and want a default value for them.)

>>> dict.fromkeys(['a', 'b', 'c'])
{'c': None, 'b': None, 'a': None}

When we subclass dict, we can use the same constructor, which creates an instance of the subclass.

>>> class MyDict(dict): 'A dict subclass, use to demo classmethods'
>>> md = MyDict.fromkeys(['a', 'b', 'c'])
>>> md
{'a': None, 'c': None, 'b': None}
>>> type(md)
<class '__main__.MyDict'>

See the pandas source code for other similar examples of alternative constructors, and see also the official Python documentation on classmethod and staticmethod.

Hope you learned something from this post.

Follow Programming Articles for more!

About ᴾᴿᴼᵍʳᵃᵐᵐᵉʳ

Linux and Python enthusiast, in love with open source since 2014, Writer at programming-articles.com, India.

View all posts by ᴾᴿᴼᵍʳᵃᵐᵐᵉʳ →